Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(2-Aminophenyl)-10-oxa-4-azatricyclo-[5.2.1.0^{2,6}]dec-8-ene-3,5-dione

Jian Li

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ljwfu@163.com

Received 17 January 2011; accepted 28 January 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.041; wR factor = 0.084; data-to-parameter ratio = 6.5.

In the title compound, $C_{14}H_{12}N_2O_3$, the essentially planar pyrrole ring [maximum deviation = 0.037 (4) Å] and the benzene ring form a dihedral angle of 69.5 (2)°. In the crystal, intermolecular N-H···O hydrogen bonds connect molecules into chains along [001]. Additional stabilization is provided by weak intermolecular C-H···O hydrogen bonds.

Related literature

For the pharmacological applications of 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride and its derivatives, see: Deng & Hu (2007); Hart *et al.* (2004). For related structures, see: Li (2010*a*,*b*); Goh *et al.* (2008).

Experimental

Crystal data	
$C_{14}H_{12}N_2O_3$	a = 10.4457 (11) Å
$M_r = 256.26$	b = 8.8245 (9) Å
Orthorhombic, <i>Pca</i> 2 ₁	c = 13.2114 (15) Å

V = 1217.8 (2) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\rm min} = 0.963, T_{\rm max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.084$ S = 1.011131 reflections 173 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\begin{array}{c} N2 - H2B \cdots O2^{i} \\ C3 - H3 \cdots O1^{ii} \end{array}}$	0.86 0.98	2.28 2.48	3.131 (5) 3.232 (5)	174 133
Symmetry codes: (i) -	$-x + \frac{1}{2}, y, z + \frac{1}{2};$	(ii) $-x, -y, z -$	1/2.	

 $\mu = 0.10 \text{ mm}^{-1}$ T = 298 K

 $R_{\rm int} = 0.061$

1 restraint

 $\Delta \rho_{\text{max}} = 0.14 \text{ e} \text{ Å}$

 $\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

 $0.38 \times 0.33 \times 0.20$ mm

5021 measured reflections

1131 independent reflections

827 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection: SMART (Bruker, 1997); cell refinement: SAINT

(Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL*.

The author thanks the Shandong Provincial Natural Science Foundation, China (ZR2009BL027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5200).

References

- Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deng, L. P. & Hu, Y. Z. (2007). J. Heterocycl. Chem. 44, 597-601.
- Goh, Y. W., Pool, B. R. & White, J. M. (2008). J. Org. Chem. 73, 151–156.
- Hart, M. E., Chamberlin, A. R., Walkom, C., Sakoff, J. A. & McCluskey, A. (2004). Bioorg. Med. Chem. Lett. 14, 1969–1973.
- Li, J. (2010a). Acta Cryst. E66, 03238.
- Li, J. (2010b). Acta Cryst. E66, 03327.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o588 [doi:10.1107/S160053681100362X]

4-(2-Aminophenyl)-10-oxa-4-azatricyclo[5.2.1.0^{2,6}]dec-8-ene-3,5-dione

J. Li

Comment

7-Oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride has been widely employed in clinical practice, as it has low toxicity and is relatively easy to synthesize (Deng & Hu, 2007). Its derivatives are pharmacologically active (Hart *et al.*, 2004). In this paper, the structure of the title compound, (I), is reported. The molecular structure of (I) is shown in Fig. 1. The bond lengths and bond angles are as expected and they are comparable to those in similar compounds (Li, 2010*a*,*b*; Goh, *et al.*, 2008). The essentially planar pyrrole ring (maximum deviation = 0.037 (4)Å for atom C2) and the benzene ring form a dihedral angle of 69.5 (2) °. In the crystal, intermolecular N—H…O hydrogen bonds connect molecules into one-dimensional chains along [001]. Additional stabilization is provided by weak intermolecular C—H…O hydrogen bonds.

Experimental

A mixture of *exo*-7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride (0.332 g, 2 mmol) and benzene-1,2-diamine (0.216 g, 2 mmol) in methanol (5 ml) was stirred for 5 h at room temperature, and then refluxed for 1 h. After cooling the precipitate was filtered and dried, the title compound was obtained. The crude product of 20 mg was dissolved in methanol of 10 ml. The solution was filtered to remove impurities, and then the filtrate was left for crystallization at room temperature. The single-crystal suitable for X-ray determination was obtained by evaporation of a methanol solution of the title compound after 5 days.

Refinement

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. H atoms were initially located in difference maps and then refined in a riding-model approximation with C—H = 0.93-0.98 Å, N—H = 0.86Å and U_{iso} (H) = $1.2U_{eq}$ (C,N).

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoide drawn at the 30% probability level.

Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.

4-(2-Aminophenyl)-10-oxa-4-azatricyclo[5.2.1.0^{2,6}]dec-8-ene-3,5-dione

F(000) = 536 $D_{\rm x} = 1.398 \text{ Mg m}^{-3}$

 $\theta = 3.1 - 20.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 298 K

Block, pale yellow $0.38 \times 0.33 \times 0.20 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 975 reflections

Crystal data

$C_{14}H_{12}N_2O_3$
$M_r = 256.26$
Orthorhombic, <i>Pca</i> 2 ₁
Hall symbol: P 2c -2ac
a = 10.4457 (11) Å
b = 8.8245 (9) Å
c = 13.2114 (15) Å
V = 1217.8 (2) Å ³
Z = 4

Data collection

Bruker SMART CCD diffractometer	1131 independent reflections
Radiation source: fine-focus sealed tube	827 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.061$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1997)	$h = -12 \rightarrow 11$
$T_{\min} = 0.963, T_{\max} = 0.980$	$k = -10 \rightarrow 10$
5021 measured reflections	$l = -15 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.084$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_0^2) + (0.0348P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
1131 reflections	$(\Delta/\sigma)_{max} < 0.001$
173 parameters	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.0406 (3)	0.1444 (3)	0.0863 (2)	0.0401 (7)
N2	0.2069 (3)	0.1868 (4)	0.2520 (3)	0.0729 (11)
H2A	0.2110	0.1054	0.2164	0.087*
H2B	0.2577	0.1992	0.3025	0.087*
01	-0.0454 (3)	-0.0189 (3)	0.20351 (18)	0.0680 (9)
O2	0.1232 (3)	0.2521 (3)	-0.0577 (2)	0.0671 (9)
O3	0.2418 (2)	-0.1090 (3)	0.03190 (19)	0.0562 (7)
C1	-0.0025 (4)	0.0040 (4)	0.1192 (3)	0.0467 (9)
C2	0.0207 (4)	-0.1091 (4)	0.0363 (3)	0.0476 (9)
H2	-0.0560	-0.1684	0.0201	0.057*
C3	0.0677 (3)	-0.0159 (4)	-0.0536 (3)	0.0469 (10)
H3	0.0115	-0.0229	-0.1128	0.056*
C4	0.0818 (3)	0.1439 (5)	-0.0139 (3)	0.0462 (10)
C5	0.0363 (4)	0.2805 (4)	0.1474 (3)	0.0442 (9)
C6	0.1193 (4)	0.2968 (4)	0.2282 (3)	0.0490 (10)
C7	0.1108 (5)	0.4281 (5)	0.2857 (3)	0.0709 (14)
H7	0.1657	0.4417	0.3404	0.085*
C8	0.0224 (6)	0.5379 (5)	0.2631 (4)	0.0818 (16)
H8	0.0173	0.6247	0.3029	0.098*
C9	-0.0598 (5)	0.5204 (5)	0.1810 (4)	0.0783 (14)
Н9	-0.1187	0.5958	0.1652	0.094*
C10	-0.0533 (4)	0.3914 (5)	0.1239 (3)	0.0588 (11)
H10	-0.1087	0.3780	0.0695	0.071*
C11	0.1408 (4)	-0.2123 (4)	0.0576 (3)	0.0555 (11)
H11	0.1455	-0.2562	0.1256	0.067*
C12	0.1452 (4)	-0.3243 (5)	-0.0286 (3)	0.0640 (12)
H12	0.1251	-0.4269	-0.0259	0.077*
C13	0.1827 (4)	-0.2477 (5)	-0.1075 (3)	0.0629 (13)
H13	0.1946	-0.2846	-0.1728	0.075*
C14	0.2030 (4)	-0.0868 (4)	-0.0717 (3)	0.0548 (11)
H14	0.2615	-0.0259	-0.1130	0.066*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

momie displacement parameters (21)	Atomic	displace	ement	parameters	$(Å^2)$
------------------------------------	--------	----------	-------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0467 (17)	0.0387 (18)	0.0349 (15)	-0.0027 (15)	0.0028 (13)	0.0024 (14)
N2	0.076 (3)	0.068 (2)	0.075 (3)	-0.004 (2)	-0.025 (2)	0.004 (2)
01	0.094 (2)	0.066 (2)	0.0437 (16)	-0.0215 (16)	0.0186 (16)	0.0025 (14)
O2	0.093 (2)	0.0526 (19)	0.0561 (17)	-0.0006 (16)	0.0217 (16)	0.0131 (14)

supplementary materials

03	0.0502 (17)	0.0539 (16)	0.0644 (17)	-0.0025 (15)	-0.0137 (14)	-0.0007 (13)
C1	0.051 (2)	0.049 (2)	0.040 (2)	-0.008 (2)	-0.0003 (18)	-0.0011 (17)
C2	0.052 (2)	0.048 (2)	0.0433 (19)	-0.009 (2)	0.0000 (18)	-0.0039 (19)
C3	0.051 (2)	0.051 (2)	0.038 (2)	0.005 (2)	-0.0063 (17)	0.0006 (18)
C4	0.047 (2)	0.050 (3)	0.042 (2)	0.006 (2)	0.0011 (18)	0.009 (2)
C5	0.046 (2)	0.042 (2)	0.045 (2)	0.002 (2)	0.0095 (18)	0.0005 (18)
C6	0.053 (3)	0.049 (2)	0.045 (2)	-0.004 (2)	0.0000 (19)	-0.0003 (19)
C7	0.086 (4)	0.065 (3)	0.062 (3)	-0.027 (3)	0.014 (2)	-0.019 (2)
C8	0.095 (4)	0.053 (3)	0.097 (4)	-0.012 (3)	0.049 (3)	-0.028 (3)
C9	0.068 (4)	0.051 (3)	0.115 (4)	0.016 (3)	0.027 (3)	0.003 (3)
C10	0.055 (3)	0.047 (2)	0.075 (3)	0.003 (2)	0.008 (2)	0.004 (2)
C11	0.067 (3)	0.050 (2)	0.050 (2)	-0.003 (2)	-0.006 (2)	0.0055 (18)
C12	0.076 (3)	0.046 (3)	0.070 (3)	0.005 (2)	0.001 (2)	-0.008 (2)
C13	0.069 (3)	0.061 (3)	0.059 (3)	0.014 (2)	0.002 (2)	-0.013 (2)
C14	0.056 (3)	0.061 (3)	0.047 (2)	0.006 (2)	0.0046 (19)	0.003 (2)

Geometric parameters (Å, °)

N1-C1	1.388 (4)	C5—C6	1.383 (5)
N1—C4	1.392 (4)	C5—C10	1.390 (5)
N1—C5	1.447 (4)	C6—C7	1.388 (5)
N2—C6	1.370 (5)	C7—C8	1.372 (7)
N2—H2A	0.8600	С7—Н7	0.9300
N2—H2B	0.8600	C8—C9	1.392 (7)
O1—C1	1.217 (4)	C8—H8	0.9300
O2—C4	1.198 (4)	C9—C10	1.367 (6)
O3—C11	1.434 (4)	С9—Н9	0.9300
O3—C14	1.440 (4)	C10—H10	0.9300
C1—C2	1.502 (5)	C11—C12	1.508 (5)
C2—C3	1.525 (5)	C11—H11	0.9800
C2—C11	1.576 (5)	C12—C13	1.303 (6)
С2—Н2	0.9800	C12—H12	0.9300
C3—C4	1.512 (5)	C13—C14	1.512 (5)
C3—C14	1.564 (5)	С13—Н13	0.9300
С3—Н3	0.9800	C14—H14	0.9800
C1—N1—C4	113.3 (3)	C8—C7—C6	120.9 (5)
C1—N1—C5	123.8 (3)	C8—C7—H7	119.5
C4—N1—C5	122.9 (3)	С6—С7—Н7	119.5
C6—N2—H2A	120.0	C7—C8—C9	120.4 (4)
C6—N2—H2B	120.0	С7—С8—Н8	119.8
H2A—N2—H2B	120.0	С9—С8—Н8	119.8
C11—O3—C14	96.0 (3)	С10—С9—С8	119.5 (4)
O1—C1—N1	123.6 (3)	С10—С9—Н9	120.3
O1—C1—C2	128.1 (4)	С8—С9—Н9	120.3
N1—C1—C2	108.2 (3)	C9—C10—C5	119.8 (4)
C1—C2—C3	105.2 (3)	C9—C10—H10	120.1
C1—C2—C11	112.4 (3)	C5-C10-H10	120.1
C3—C2—C11	101.2 (3)	O3—C11—C12	102.5 (3)
C1—C2—H2	112.4	O3—C11—C2	100.2 (3)

С3—С2—Н2	112.4		C12—C11—C2		105.5 (3)
С11—С2—Н2	112.4		O3—C11—H11		115.6
C4—C3—C2	105.3 (3)		C12—C11—H11		115.6
C4—C3—C14	109.8 (3)		C2-C11-H11		115.6
C2—C3—C14	101.2 (3)		C13—C12—C11		105.9 (4)
С4—С3—Н3	113.2		C13—C12—H12		127.1
С2—С3—Н3	113.2		C11—C12—H12		127.1
С14—С3—Н3	113.2		C12—C13—C14		106.1 (4)
O2—C4—N1	124.7 (4)		С12—С13—Н13		126.9
O2—C4—C3	127.7 (4)		C14—C13—H13		126.9
N1—C4—C3	107.6 (3)		O3—C14—C13		102.1 (3)
C6—C5—C10	121.4 (3)		O3—C14—C3		99.4 (3)
C6—C5—N1	119.9 (3)		C13—C14—C3		107.3 (3)
C10—C5—N1	118.7 (3)		O3—C14—H14		115.4
N2—C6—C5	121.4 (3)		C13—C14—H14		115.4
N2—C6—C7	120.6 (4)		C3—C14—H14		115.4
C5—C6—C7	118.0 (4)				
C4—N1—C1—O1	-178.2 (4)		C10—C5—C6—C7		0.0 (5)
C5—N1—C1—O1	-1.7 (5)		N1-C5-C6-C7		-179.1 (3)
C4—N1—C1—C2	4.9 (4)		N2—C6—C7—C8		-179.2 (4)
C5—N1—C1—C2	-178.6 (3)		С5—С6—С7—С8		0.1 (6)
O1—C1—C2—C3	176.8 (4)		С6—С7—С8—С9		-0.7 (7)
N1—C1—C2—C3	-6.4 (4)		С7—С8—С9—С10		1.1 (7)
O1—C1—C2—C11	-73.9 (5)		C8—C9—C10—C5		-0.9 (6)
N1-C1-C2-C11	102.8 (3)		C6—C5—C10—C9		0.4 (6)
C1—C2—C3—C4	5.6 (4)		N1-C5-C10-C9		179.5 (3)
C11—C2—C3—C4	-111.6 (3)		C14—O3—C11—C12		48.6 (3)
C1—C2—C3—C14	119.9 (3)		C14—O3—C11—C2		-59.9 (3)
C11—C2—C3—C14	2.7 (3)		C1—C2—C11—O3		-77.4 (3)
C1—N1—C4—O2	-179.7 (4)		C3—C2—C11—O3		34.3 (3)
C5—N1—C4—O2	3.7 (6)		C1—C2—C11—C12		176.5 (3)
C1—N1—C4—C3	-1.1 (4)		C3—C2—C11—C12		-71.8 (4)
C5—N1—C4—C3	-177.7 (3)		O3—C11—C12—C13		-31.7 (4)
C2—C3—C4—O2	175.5 (4)		C2-C11-C12-C13		72.7 (4)
C14—C3—C4—O2	67.3 (5)		C11—C12—C13—C14		0.3 (5)
C2—C3—C4—N1	-3.0 (4)		C11—O3—C14—C13		-48.3 (3)
C14—C3—C4—N1	-111.2 (3)		C11—O3—C14—C3		61.8 (3)
C1—N1—C5—C6	72.1 (4)		C12—C13—C14—O3		31.1 (4)
C4—N1—C5—C6	-111.7 (4)		C12—C13—C14—C3		-72.9 (4)
C1—N1—C5—C10	-107.0 (4)		C4—C3—C14—O3		72.1 (3)
C4—N1—C5—C10	69.2 (5)		C2—C3—C14—O3		-38.9 (3)
C10C5C6N2	179.4 (3)		C4—C3—C14—C13		178.0 (3)
N1—C5—C6—N2	0.3 (5)		C2-C3-C14-C13		67.0 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A

0.86

N2—H2B····O2ⁱ

174

2.28 3.131 (5)

supplementary materials

C3—H3···O1 ⁱⁱ	0.98	2.48	3.232 (5)	133
Symmetry codes: (i) $-x+1/2$, v, $z+1/2$; (ii) $-x$,	-v, z-1/2.			

Fig. 1

